MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY

FRM-001/00QSP-004

DEPARTMENT/INSTITUTE/DIRECTORATE: CIVIL ENGINEERING TENTATIVE TEACHING PLAN Dec.01.2001

Name of Teacher: Engr.Maroosha Larik / Engr. Ghulam Mehdi/ Engr. M. Tahir Mahesar

Batch: 23CE (A+B+C+D)
Subject: Engineering Surveying (Practical)
Term Starting Date: 18-12-2023

Year: $\mathbf{1}^{\text {st }}$ Semester: $\mathbf{2}^{\text {nd }}$

Subject Code: CE127
Term Suspension Date:18/04/2024

Course learning outcome:

After completion of the course, each student will be able to:

CLO No.	Description	Taxonomy level	Linking to PLOs
4	OPERATE various surveying instruments used for linear and angular measurements.	P3	5

S. No	Topics	Lectures Required
1.	(a) : Introduction to Health and Safety measures in Engineering Surveying Lab . (b) : Introduction to various Surveying instruments. (c) : Various methods and equipment used for measuring distance.	
$\mathbf{2 .}$	To range out a survey line when the two ends of a line areinter-visible from each end, and when two end points are not inter-visible from each end (Direct and Indirect Ranging).	$\mathbf{0 3}$
$\mathbf{3 .}$	To measure the horizontal distance between two terminal stations by different methods when the ground is flat and to determine the horizontal distance between the two terminal stations on a sloping ground by (I) Stepping Method (II) Using Abney Level.	$\mathbf{0 3}$
$\mathbf{4 .}$	To set out the base line and Perpendicular line / Offsets in the field.	$\mathbf{0 3}$
$\mathbf{5 .}$	Introduction to Automatic level and temporary adjustment of Automatic level.	$\mathbf{0 3}$
$\mathbf{6 .}$	To collect data for Profile Levelling and cross-sectional leveling of a proposed road using Auto Level.	$\mathbf{0 3}$
7.	To draw profile of a road (L-Section) and Cross-sections of a proposed road from obtained level data.	$\mathbf{0 3}$
$\mathbf{8 .}$	Introduction to theodolite and its temporary adjustment and to determine the Horizontal angles, vertical angles and bearing of lines.	$\mathbf{0 3}$
$\mathbf{9 .}$	To determine the independent coordinates of an existing building by theodolite traversing.	$\mathbf{0 3}$
$\mathbf{1 0 .}$	To determine horizontal distances by tacheometric Surveying when the line of sight is horizontal.	$\mathbf{0 3}$
$\mathbf{1 1 .}$	Orientation of Total Station and its Adjustment.	$\mathbf{0 3}$
$\mathbf{1 2 .}$	To set out the Simple Circular Curve by deflection Angle method.	$\mathbf{0 3}$
T3.	To collect data for contour map of a given area of land by using total station.	$\mathbf{0 3}$
$\mathbf{1 4 .}$	To determine R.L at top of elevated object by Trigonometric Leveling.	$\mathbf{0 3}$
$\mathbf{1 5 .}$	To set out layout of a building by using coordinate method with the help of total station.	$\mathbf{0 3}$
$\mathbf{1 6 .}$	To perform an open-ended lab.	$\mathbf{0 3}$
	Total lectures	$\mathbf{4 8}$

Signature of Teacher:

Dated: 13-12-2023

Remarks by DMRC: APPROVED
Signature of Chairman: Dated: 21/12/2023

