

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY JAMSHORO Department of Civil Engineering

LESSON PLAN

COURSE TITLE: COURSE CODE: CREDIT MINIMUM CONTACT						
Fluid Mechanics	& Hydraulics	CE227	HOURS: 03	HOURS: 48		
COURSE INSTRUCTER: Prof. Dr. Khalifa Qasim Laghari (B) / Engr. Abdul Qudoos Malano (A+C)/ Engr.						
Maroosha Larik (D)						
Batch: 22CE	Semester: 3 rd	Semester Starting Date: 15-07-2	Semester Sus	pension Date: 06-11-2024		

COURSE LEARNING OUTCOMES:

CLO No.	Description	Taxonomy level	Associated PLO
1	DESCRIBE the concepts related to fluid statics, kinematics, dynamics and simulation model of a real hydraulic structure.	C2	1
2	SOLVE problems related to various open channel x-sections and flow based on hydraulic energy & momentum principles.	С3	2

LESSON CONTENTS AND ASSOCIATED CLO(s)

EESSON CONTENTS AND ASSOCIATED CEO(s)	OI O	34 1	D.P.	
Contents	CLO No.	Marks Assigned	Delivery Methods	Assessment Methods (Marks)
Properties of Fluid Density, Specific weight, Specific volume, Specific gravity, Viscosity and Newton's law of viscosity, Bulk modulus of elasticity, Surface tension, Capillarity, Dimensions and Systems of units. Fluid Statics Pressure; Pressure head, Pressure-head relationship, Atmospheric pressure, Absolute pressure, Gauge pressure and Pascal's law. Equipment's for measurement of pressure, Piezometer, Manometers, Bourdon gauge and Mechanical gauges. Hydrostatic pressure, Buoyancy and stability of floatation. Fluid Kinematics Basic concepts of uniform and non-uniform, Flow rate and mean velocity, Acceleration in fluid flow. Fluid Dynamics Continuity equation in differential form for steady and unsteady flows, Continuity equation's integral form, Total head or energy (Bernoulli's) equation and its applications.	1	55	 Class Lecture Discussion Example practice 	 Class Test (05) Quiz (05) Mid Semester Exam (30) Final Exam (15)
Hydraulic Similitude Dimensions analysis of physical quantities (FLT or MLT system of measurement) by Releigh's or Buckingham's π-Theorem and its applications, Model analysis, Model and its prototype's geometric, kinematic, dynamic and hydraulic similarities, Dimension less number and their significance. No. of lectures Required: 26				

Open Channel Flow and its Classifications Types of open channel and flow. States of flow and Regimes of flow, uniform flow (Chezy's and Manning's velocity equations) through various channel sections.				
Design of Open Channels and Their Properties Open channels Channel geometry, Design of most efficient, effective and economical open channel sections.			• Class Lecture	• Assignment (10)
Energy and Momentum Principles Non-uniform flow, Energy in open channels, Specific energy, Critical flow, Momentum principle and its applications, Hydraulic jump and its applications.	2	45	DiscussionExample practice	• Final Exam (35)
Flow Rate Measurement in Open Channels Measurement of discharge through weirs, modular and non-modular venturi-flumes.				
Introduction to subject relevant software's				

No. of lectures Required: 22

ASSESSMENT DETAILS

S. No.	Assessment Activities	Assessment Activities Marks Activities			CLO(s) to be assessed
1	Class Test/Assignment/ Quiz	20	Assignment	1	2
			Class Test(s)/Quiz(s)	1+1	1
2	Mid Semester Exam	30	1		1
3	Final Semester Exam	50	1		1, 2

Prepared by: Dr. Khalifa Qasim Laghari

Signature:

Dated: 27-05-2024

Reviewed by: Curriculum Review Committee

Signature

Dated: 30-05-2024

Approved by: Chairman, CED

Signature:

Dated: 30-05-2024